誤差の話は、 実験の方法を解説した本では出てきますが、 データ解析の方法を解説した本では、筆者の知る限りですが、ないと思います。
しかし、誤差の大きさを考えずにデータを扱うと、 解析の結果が思うように出ない時に、その原因がわからないままになる事があります。 また、再現性の期待できない解析結果を、真実であるかのように思ってしまったりします。
誤差の話を知っていれば、データ解析は強固になりますし、解析できることが増えます。
誤差は 統計学 的な見方で分類すると、偶然誤差と系統誤差の2種類があります。
実際のデータでは、両者の違いが明確に見えない事もよくありますが、 2種類ある事を意識していると、解析の糸口になります。
偶然誤差は、真の値のあたりを測定していても、測定器の能力等が原因で、 真の値の近辺であることしかわからない、という誤差です。
例えば、7mの高さの木を見たら、「7m」ちょうどではなく、「5m」や「8m」にも見える事があると思いますが、 こういうのが偶然誤差です。
下記の系統誤差がなくて、偶然誤差しかない状況でしたら、 何回も同じ測定をした時にできる分布は、真の値を中心にした 正規分布 になっているのが一般的です。
測定者の癖や、測定器の癖、校正状態、測定条件等の原因によって、 真の値が本来測ろうとしている位置からずれている状態を系統誤差と言います。
木の例でしたら、周りが明るい時には高めに見えるのに、暗い時には低めに見えるとか、 見るときの姿勢で見え方が変わってしまうとか、になります。
偶然誤差だけならば、複数回測定した値の平均値は、回数が多いほど真の値に近くなります。 しかし、系統誤差があると、何回も測定して「間違いない」と思った値が、真の値からずれている可能性があります。
系統誤差の原因を突き止めるには、 ノウハウ、経験、カン、と言うものも不可欠です。
「ノイズ」は「雑音」と訳され、文字通り雑多な音を指すこともありますが、 もっと大きな意味で、電気信号の不要で邪魔な部分という意味で使われることもあります。 一例は、「ホワイトノイズ(白色雑音)」です。 「ホワイト」というのは、すべての周波数が均等に入っているという意味です。
欲しい電気信号に対して、ノイズがどの程度入っているのかの尺度がSN比です。 SN比は、信号を分子にして、ノイズを分母にした量です。
品質工学 では、「ノイズ」を「誤差」の意味で使っています。 ちなみに、 品質工学のSN比 は、電気信号のSN比とは意味が異なります。
測っているものが同じでも、測定の誤差が大きいと、同じであることを確認できないです。 測定を保証するための日本の法律として、 計量法 があります。
工程管理 でも、測定器の管理は重要です。 これをおろそかにすると、製品自体には何の問題もないのに、不良品になってしまう事もあります。
測定器は「物」なので、一般的には、劣化したり、変形したりします。すると、同じ値を出すと思っていても、測定値が、だんだん変わります。
そのため、標準になるサンプルを用意して、測定値を校正(修正)する事があります。 校正の間隔は、測定器の性質や使い方によります。 1カ月に1回の事もありますし、場合によっては、測定する時は毎回の事もあります。
「誤差がわかれば実験データがいきる 技術者と科学者のための不確かさ解析」 Faith A.Morrison 著 丸善出版 2023
序論で有効数字
の話をして、誤差を、反復誤差、読み取り誤差、較正誤差の3種類として説明してから、誤差の伝播、モデルフィッティングの話をしています。
反復誤差:信頼区間や予測区間で見る
読み取り誤差:読み取り誤差は、感度、分解能、ゆらぎの3つの要素うちの最大のもの
較正誤差:正確な既知のデータからの差
モデルフィッティング:多項式の予測区間を紹介
「新しい誤差論 実験データ解析法」 吉澤泰和 著 協立出版 1989
誤差に関わる統計学の本です。
「データ・誤差解析の基礎」 H.J.C.BERENDSEN 著 林茂雄・馬場凉 訳 東京化学同人 2013
誤差の伝播
や、関数によるフィッティング等の、少しレベルの高い話があります。
最終章が
ベイズ統計
になっている点は珍しいと思いました。
「いかにして実験をおこなうか ―誤差の扱いから論文作成まで―」 重川秀実・山下理恵・吉村雅満・風間重雄 訳 丸善 2006
実験でのデータの扱い方や、測定の知識をまとめた本。
ノウハウ的な注意も親切に書いてあります。
実験全般の教科書ですが、
実験計画法
は含まれていないです。
順路 次は ゲージR&R