情報理論(Infomation Theory)は、情報の量を数学的に定義して扱う分野です。
「情報理論」がタイトルになっている本は、情報量の解説から始まって、 通信の話に入っていくものが多いです。
しかし、 統計学 や 機械学習 の分野は情報の扱い方が重要ですので、これらの分野でも、情報量という量は使われています。
情報理論では、情報量を
情報量 = log ( 1/ 事象の起きる確率 )
と定義します。
このようにすると、「起こりにくいと思っている事象ほど、情報の値は高い」という性質を表現できるようになります。
また、この表現は、統計学と情報理論の接点になっています。
情報量の平均(期待値)は、「平均情報量」と呼ばれています。
平均情報量には、 質的変数のばらつきの尺度 としての使い方があります。
統計モデルの妥当性を評価する方法で、情報理論と 統計学 にまたがっている方法です。 変数の選択 の方法になります。
異なるモデルを比べるための指標が、情報量基準です。 筆者の知っている情報量基準は AIC(Akaike's Information Criterion) のみですが、 BICやGICと言った量も考案されているようです。
最尤推定量とは、モデルのパラメータの値です。 最尤推定量や情報量基準は、 カルバック情報量(相対エントロピーとも言います)を最小化することによって求まります。
情報理論では、フィッシャー情報行列という量が出てきます。 フィッシャーという名前は、 分布(F分布)でも、 分散分析でも、 実験計画法でも登場しますが、同一人物です。 ずいぶんお世話になっていることを、当サイトを作っていて初めて知りました。
「情報理論の基礎 情報と学習の直観的理解のために」 村田昇 著 サイエンス社 2008
機械学習
の中での情報理論を理解するための本です。
情報幾何学を紹介し、いろいろなアルゴリズムの幾何学的な説明もあります。
サンプリングの本としても、参考になります。
EMアルゴリズム : データの欠損がある時に、その部分を補間して使う方法。
「情報の物理学」 豊田正 著 講談社 1997
「情報が多い・少ない」ということを、どうやって量として定義するのかについて、
身近な例を使ったわかりやすい解説があります。
また、情報量基準(AIC)の導出があります。
「生のデータを料理する」 岸野洋久 著 日本評論社 1999
親しみやすいタイトルですが、中身は難解です。
実際の調査と理論の結び付きが、しっかりしています。
「情報系の数学入門」 林晋・八杉満利子 著 オーム社 1993
集合や論理の本です。
情報理論の本ではないですが、他に適当なページがなかったので、ここにメモしています。
「イラストで学ぶ情報理論の考え方」 植松友彦 著 講談社 2012
情報量の性質を丁寧に解説しています。
順路
次は
情報統計力学